如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线. 求证:∠C=∠BAE.
问题描述:
如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.
求证:∠C=∠BAE.
答
证明:延长AE到F,使EF=AE,连接DF,
∵AE是△ABD的中线
∴BE=ED,
在△ABE与△FDE中
∵
,
BE=DE ∠AEB=∠DEF AE=EF
∴△ABE≌△FDE(SAS),
∴AB=DF,∠BAE=∠EFD,
∵∠ADB是△ADC的外角,
∴∠DAC+∠ACD=∠ADB=∠BAD,
∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,
∴∠EFD+∠EAD=∠DAC+∠ACD,
∴∠ADF=∠ADC,
∵AB=DC,∴DF=DC,
在△ADF与△ADC中
∵
,
AD=AD ∠ADF=∠ADC FD=DC
∴△ADF≌△ADC(SAS)
∴∠C=∠AFD=∠BAE.