求证a+b/2≤(a^2+b^2/2)的平方根
问题描述:
求证a+b/2≤(a^2+b^2/2)的平方根
其中,a.b都是正数
请用分析法和综合法各证明一次
zqs626290你到底看得懂看不懂啊...随便带个数左边都小于右边好不好
答
分析法:由结论推到条件.
因为:
a+b/2≤√[(a^2+b^2/2)],a.b都是正数 ,两边平方得,
(a^2+b^2+2ab)/4≤(a^2+b^2)/2,
(a^2+b^2+2ab)≤2(a^2+b^2),
2ab≤a^2+b^2,
而,0≤(a-b)^2,只有仅当a=b时,取等号,不等式显然成立.
即有,
(a+b)/2≤√[(a^2+b^2/2)],成立.
综合法:就是由已知条件,推到结论.
因为:
a.b都是正数,
(a-b)^2≥0,当且仅当a=b时,不等式取等号,不等式显然成立,
a^2+b^2≥2ab也成立,
在不等到式两边同时加上a^2+b^2得,
2(a^2+b^2)≥a^2+b^2+2ab,成立,
在不等式的两边同时除以4得,
(a^2+b^2)/2≥(a+b)^2/4,成立,
两边同时开平方根得,
√[(a^2+b^2)/2]≥√[(a+b)^2/4]=(a+b)/2,成立,
即有,(a+b)/2≤√[(a^2+b^2/2)],成立.
原不等式成立,得证.