如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=4,点E在AB边上,且CE平分∠BCD,DE平分∠ADC,则点E到CD的距离为______.
问题描述:
如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=4,点E在AB边上,且CE平分∠BCD,DE平分∠ADC,则点E到CD的距离为______.
答
过点E作EF⊥CD于F,过点D作DH⊥BC于H,∵AD∥BC,AB⊥BC,∴∠A=∠B=90°∵CE平分∠BCD,DE平分∠ADC,∴AE=EF,BE=EF,∴EF=AE=BE=12AB,∴△ADE≌△FDE,△CEF≌△CEB,∴DF=AD=2,CF=CB=4,∴CD=6,∵AB⊥BC,DH...
答案解析:首先由过点E作EF⊥CD于F,过点D作DH⊥BC于H,在直角梯形ABCD中,AD∥BC,AB⊥BC,即可得四边形ABHD是矩形,又由CE平分∠BCD,DE平分∠ADC,即可得AD=FD,BC=FC,即可求得CD的长,继而在Rt△DHC中求得DH的长,则可得点E到CD的距离.
考试点:相似三角形的判定与性质;角平分线的性质;直角梯形.
知识点:此题考查了梯形的性质,全等三角形的判定与性质,角平分线的性质以及直角三角形的性质等知识.此题综合性很强,难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.