解方程1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).1/(x-2011)(x-2012)=2012

问题描述:

解方程1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).1/(x-2011)(x-2012)=2012
另外,化简下面的代数式
1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).....1/(x-2011)(x-2012)

1/(x-1)(x-2)+1/(x-2)(x-3)+1/(x-3)(x-4).1/(x-2011)(x-2012)
=(1/(x-2)-1/(x-1))+(1/(x-3)-1/(x-2)).(1/(x-2012)-1/(x-2011))
=1/(x-2012)-1/(x-1)
1/(x-2012)-1/(x-1)=2012
X1=(2013+√(2033794876/503))/2
X2=(2013-√(2033794876/503))/2