如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF. 求证:(1)CF=EB; (2)∠CBA+∠AFD=180°.
问题描述:
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.
求证:(1)CF=EB;
(2)∠CBA+∠AFD=180°.
答
(1)∵∠C=90°,
∴DC⊥AC.
∵AD是∠BAC的平分线,DE⊥AB,
∴DC=DE.
在Rt△DCF和Rt△DEB中
,
BD=DF DC=DE
∴At△DCF≌Rt△DEB(HL),
∴CF=EB.
(2)∵Rt△DCF≌Rt△DEB,
∴∠DFC=∠B.
∵∠DFC+∠AFD=180°,
∴∠CAB+∠AFD=180°.