tanθ=2,2sin^2θ+3sin2θ+1=?

问题描述:

tanθ=2,2sin^2θ+3sin2θ+1=?
怎么两个答案不一样啊

2sin^2θ+3sin2θ+1=(2sin^2θ+3sin2θ+1)/1=(2sin^2θ+3*2sinθ*cosθ+sin^2θ+cos^2θ)/sin^2θ+cos^2θ=
然后分子,分母,同时除以cos^2θ
=(3tan^2θ+6tanθ+1)/tan^2θ+1=(12+12+1)/5=5