椭圆x^2/a^2+y^2/b^2=1 上的点M与椭圆右焦点F1的连线MF1与x轴垂直,(急!)

问题描述:

椭圆x^2/a^2+y^2/b^2=1 上的点M与椭圆右焦点F1的连线MF1与x轴垂直,(急!)
且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F2是椭圆的左焦点,C是椭圆上的任一点,证明:∠F1CF2≤ π/2;
(3)过F1且与AB垂直的直线交椭圆于P、Q,
若△PF2Q的面积是20根号3 ,求此时椭圆的方程.

1.易得M(c,b^2/a)
MO//AB,c/(b^2/a)=a/b
得b=c,e=√2/2
2.由焦点三角形面积公式s=b^2*tg(θ/2)
有因为当C在B时,s(max)=bc>=b^2*tg(θ/2)
tg(θ/2)