求证: (1)2sin(π+θ)•cosθ−11−2sin2θ=tan(9 π+θ)+1tan(π+θ)−1; (2)tanθ•sinθtanθ−sinθ=cosθ•(tanθ+sinθ)sin2θ.

问题描述:

求证:
(1)

2sin(π+θ)•cosθ−1
1−2sin2θ
tan(9 π+θ)+1
tan(π+θ)−1

(2)
tanθ•sinθ
tanθ−sinθ
cosθ•(tanθ+sinθ)
sin2θ

证明:(1)左边=

−2sinθcosθ−1
cos2θ−sin2θ
=
(sinθ+cosθ)2
(sinθ+cosθ)cosθ−sinθ)
(sinθ+cosθ)
(sinθ−cosθ)
tanθ+1
tanθ−1
=
−sinθ−cosθ
cosθ−sinθ
=
−tanθ−1
1−tanθ
=
tanθ+1
tanθ−1

右边=
tan(8π+π+θ)+1
tanθ−1
=
tanθ+1
tanθ−1

∴左=右,得证;
(2)左边=
sinθ
cosθ
•sinθ
sinθ
cosθ
−sinθ
=
sin2θ
sinθ(1−cosθ)
=
sinθ
1−cosθ

右边=
cosθ•(
sinθ
cosθ
+sinθ)
sin2θ
=
sinθ(1+cosθ)
1−cos2θ
=
sinθ
1−cosθ

∴左=右,得证.