设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

问题描述:

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则 λ^3-2λ^2+4λ-3 是 A^3-2A^2+4A-3E 的特征值而 A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以 λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-3=(λ-1)(λ^2-λ+3)=0而实对称矩阵的特征值是实数所以A的特征...