设A为三阶实对称矩阵,且满足A^2+A-2E=0,已知向量a1=(0,1,1)^T,a2=(1,0,1)^T,是A对应特征值D=1的特征向量

问题描述:

设A为三阶实对称矩阵,且满足A^2+A-2E=0,已知向量a1=(0,1,1)^T,a2=(1,0,1)^T,是A对应特征值D=1的特征向量
求A^n

因为 A^2+A-2E=0所以A的特征值满足 λ^2+λ-2=0所以 (λ-1)(λ+2)=0所以 A 的另一个特征值为 -2.又因为实对称矩阵属于不同特征值的特征向量正交所以属于特征值-2的特征向量满足x2+x3=0x1+x3=0得 (1,1,-1)^T.令 P=0 1...