如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H. (1)求证:△ABE∽△ECF; (2)找出与△ABH相似的三角形,并证明; (3)若E是BC中点,BC=2AB

问题描述:

如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.

(1)求证:△ABE∽△ECF;
(2)找出与△ABH相似的三角形,并证明;
(3)若E是BC中点,BC=2AB,AB=2,求EM的长.

(1)证明:∵四边形ABCD是矩形,
∴∠ABE=∠ECF=90°.
∵AE⊥EF,∠AEB+∠FEC=90°.
∴∠AEB+∠BAE=90°,
∴∠BAE=∠CEF,
∴△ABE∽△ECF;
(2)△ABH∽△ECM.
证明:∵BG⊥AC,
∴∠ABG+∠BAG=90°,
∴∠ABH=∠ECM,
由(1)知,∠BAH=∠CEM,
∴△ABH∽△ECM;
(3)作MR⊥BC,垂足为R,
∵AB=BE=EC=2,
∴AB:BC=MR:RC=

1
2
,∠AEB=45°,
∴∠MER=45°,CR=2MR,
∴MR=ER=
1
3
EC=
1
3
×2=
2
3

∴在Rt△EMR中,EM=
MR
sin45°
=
2
2
3