函数f(x)在区间[a,b]上满足罗尔定理的条件,且f(x)不恒为常数,证明在(a,b)内至少存在一点 ξ,使f(
问题描述:
函数f(x)在区间[a,b]上满足罗尔定理的条件,且f(x)不恒为常数,证明在(a,b)内至少存在一点 ξ,使f(
ξ)>0 只能用于中值定理相关的工具
答
f(x)不恒为常数表明至少有一点c∈(a,b)使得f(c)≠f(a)=f(b),由拉格朗日中值定理可知存在ξ1与ξ2使得
f'(ξ1)=[f(c)-f(a)]/(c-a)
f'(ξ2)=[f(c)-f(b)]/(c-b)
由于f'(ξ1)f'(ξ2)