已知函数f(x)=2cosxsin(x+π/3)-根号3sin^2x+sinxcosx,求函数F(X)的对称轴对称中心

问题描述:

已知函数f(x)=2cosxsin(x+π/3)-根号3sin^2x+sinxcosx,求函数F(X)的对称轴对称中心

f(x)=2cosxsin(x+π/3)-√3sin^2x+sinxcosx=2cosx(1/2*sinx+√3/2*cosx) -√3sin^2x+sinxcosx= sinxcosx+√3cos^2x-√3sin^2x+sinxcosx=2 sinxcosx+√3(cos^2x-sin^2x)=sin2x+√3 cos2x=2 sin(2x+π/3)令2x+π/3=kπ...