过点M0(2,-1,0),且垂直于平面:x-2y+3z=0,的直线方程为 .

问题描述:

过点M0(2,-1,0),且垂直于平面:x-2y+3z=0,的直线方程为 .

平面x-2y 3z=0的法向量为(1,-2,3),在直线上任取一点(x,y,z),则所求直线方程为x-2y 3z=a,将点(2,-1,0)带入得a=4,所以直线方程为x-2y 3z-4=0

平面的法向量为(1,-2,3),所求直线与平面垂直,则与平面的法向量平行,所以直线的方程为:
(x-2)/1=(y+1)/-2=(z-0)/3
即:x-2=-(y+1)/2=z/3