已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1)则f(2011)+f(2013)的值为( ) A.-1 B.1 C.0 D.无法计算
问题描述:
已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1)则f(2011)+f(2013)的值为( )
A. -1
B. 1
C. 0
D. 无法计算
答
∵f(-x-1)=g(-x)=-g(x)=-f(x-1),又f(x)为偶函数
∴f(x+1)=f[-(x+1)]=f(-x-1),于是f(x+1)=-f(x-1)
∴f(x+1)+f(x-1)=0.
∴f(2011)+f(2013)=f(2012-1)+f(2012+1)=0,
故选C.