求1,3a,5a2,7a3,…(2n-1)an-1的前n项和.
问题描述:
求1,3a,5a2,7a3,…(2n-1)an-1的前n项和.
答
当a=1时,数列变为1,3,5,7,…,(2n-1),则Sn=n[1+2(n−1)]2=n2.当a≠1时,有,Sn=1+3a+5a2+7a3+…+(2n-1)an-1,①aSn=a+3a2+5a3+7a4+…+(2n-1)an.②①-②得Sn-aSn=1+2a+2a2+2a3+…+2an-1-(2n-1)an,(...