已知函数f(x)=log2(x^2-ax-a)在区间(-∞ ,1减根号3]是单调递减函数.求实数a的取值范围
问题描述:
已知函数f(x)=log2(x^2-ax-a)在区间(-∞ ,1减根号3]是单调递减函数.求实数a的取值范围
答
复合函数,底数是2,所以对数已经是增函数了,要使复合后为减函数,
则二次函数x^2-ax-a在区间(-∞ ,1减根号3]是递减的,
则区间(-∞ ,1减根号3]在对称轴x=a/2的左边,即a/2≧1-√3,得:a≧2(1-√3)
还要满足对数的定义域,即把x=1-√3代入真数部分,真数部分要>0
即:(1-√3)^2-a(1-√3)-a>0
4-2√3-(2-√3)a>0
即(2-√3)a