点M(x,y)到定点F(0,4)的距离和它到定直线y=1的距离的比是常数2,求点M的轨迹.提示y^2/4-x^2/12=1
问题描述:
点M(x,y)到定点F(0,4)的距离和它到定直线y=1的距离的比是常数2,求点M的轨迹.提示y^2/4-x^2/12=1
实轴 虚轴长分别为4,4√3
答
根据双曲线的定义得M的轨迹是一个双曲线,则有焦点坐标是F(0,4)
即有c=4,e=c/a=2,故实半轴是a=2,虚半轴b^2=c^2-a^2=16-4=12
b=2根号3
故方程是y^2/4-x^2/12=1