过抛物线y=2px(p>0)的焦点F任意作直线交抛物线于A,B两点,求证点A.B到抛物线的对称轴的距离之和为定值
问题描述:
过抛物线y=2px(p>0)的焦点F任意作直线交抛物线于A,B两点,求证点A.B到抛物线的对称轴的距离之和为定值
答
1、若直线AB斜率不存在,则A、B的纵坐标都是p,到x轴的距离之和是p;2、若直线AB斜率存在,设其斜率为k,则AB:y=k(x-p/2),与抛物线y²=2px联立,消去x,得:y²-(2p/k)y+p²=0,则A、B两点到x轴的距离之和=...