如图,在三角形ABC中,AB=AC,AD垂直BC于D,E G分别为AD AC中点,DF垂直BE于F.求证:FG=DG

问题描述:

如图,在三角形ABC中,AB=AC,AD垂直BC于D,E G分别为AD AC中点,DF垂直BE于F.求证:FG=DG

此题很好呀!证明:延长BE,DG,两线相交于H AB=AC,AD垂直BC于D 则BD=DC E ,G分别为AD,AC中点,由中位线定理 则EG‖DC,EG=DC/2=BD/2 所以△HEG∽△HBD 所以HG/HD=EG/BD=1/2 即G为DH中点 又DF垂直BE于F,∠DFH=90° 所以由...