已知二次函数f(x)满足条件f(0)=1,及f(x+1)-f(x)=2x.(1)求函数f(x)的解析式;(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
问题描述:
已知二次函数f(x)满足条件f(0)=1,及f(x+1)-f(x)=2x.
(1)求函数f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的取值范围.
答
知识点:本题重点考查二次函数解析式的求解,考查恒成立问题的处理,解题的关键是将在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,转化为x2-3x+1>m在[-1,1]上恒成立.
(1)令x=0,则∵f(x+1)-f(x)=2x,∴f(1)-f(0)=0,∴f(1)=f(0)∵f(0)=1∴f(1)=1,∴二次函数图象的对称轴为x=12.∴可令二次函数的解析式为f(x)=y=a(x-12)2+h.令x=-1,则∵f(x+1)-f(x)=2x,...
答案解析:(1)根据二次函数f(x)满足条件f(0)=1,及f(x+1)-f(x)=2x,可求f(1)=1,f(-1)=3,从而可求函数f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,等价于x2-x+1>2x+m在[-1,1]上恒成立,等价于x2-3x+1>m在[-1,1]上恒成立,求出左边函数的最小值,即可求得实数m的取值范围.
考试点:二次函数在闭区间上的最值;函数解析式的求解及常用方法;抽象函数及其应用;函数恒成立问题.
知识点:本题重点考查二次函数解析式的求解,考查恒成立问题的处理,解题的关键是将在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,转化为x2-3x+1>m在[-1,1]上恒成立.