求函数f(x)=sin(2x-π/3)-cos(2x+π/6)的最小正周期和单调递增区间
问题描述:
求函数f(x)=sin(2x-π/3)-cos(2x+π/6)的最小正周期和单调递增区间
答
利用cosa=sin(π/2-a)
f(x)=sin(2x-π/3)-cos(2x+π/6)
=sin(2x-π/3)-sin(-2x+π/3)
=sin(2x-π/3)+sin(2x-π/3)
=2sin(2x-π/3)
则T=π;
由-π/2