过圆x2+(y-2)2=4外一点A(2,-2),引圆的两条切线,切点为T1,T2,则直线T1T2的方程为 _.

问题描述:

过圆x2+(y-2)2=4外一点A(2,-2),引圆的两条切线,切点为T1,T2,则直线T1T2的方程为 ______.

设切点为T1(x1,y1),T2(x2,y2),
则AT1的方程为x1x+(y1-2)(y-2)=4,AT2的方程为x2x+(y2-2)(y-2)=4,
把A(2,-2)分别代入求得2x1-4(y1-2)=4,2x2-4(y2-2)=4
∴2x-4(y-2)=4,化简得x-2y+2=0
故答案为:x-2y+2=0