如图,在△ABC中,BC=2,BC边上的高AD=1,P是BC边上任一点,PE∥AB交AC于点E,PF∥AC交AB于点F. (1)设BP=x,请写出用x表示S△PEF的表达式; (2)P在BC的什么位置时,S△PEF取得最大值?

问题描述:

如图,在△ABC中,BC=2,BC边上的高AD=1,P是BC边上任一点,PE∥AB交AC于点E,PF∥AC交AB于点F.

(1)设BP=x,请写出用x表示S△PEF的表达式;
(2)P在BC的什么位置时,S△PEF取得最大值?

(1)∵BC=2,BC边上的高AD=1,∴S△ABC=12×2×1=1,∵BP=x,∴PC=2-x,∵PE∥AB,∴△CEP与△CAB相似,∴S△CEPS△CAB=(2−xx)2,∴S△CEP=1−x+x24,同理,得到S△BPF=x24,∵四边形AEPF为平行四边形,∴S△PE...