设二维随机变量(X,Y)的概率密度为:f(x,y)=4.8y(2-x)[0≤x≤1,0≤y≤x],0[其他],求边缘概率密度
问题描述:
设二维随机变量(X,Y)的概率密度为:f(x,y)=4.8y(2-x)[0≤x≤1,0≤y≤x],0[其他],求边缘概率密度
只要求y的边缘概率密度就可以了,x的我会求……
答
f(y)=∫(-∞到∞)f(x,y)dx
=∫(y到1)4.8y(2-x)dx
=2.4xy(4-x)|(y到1)
=2.4y(3-4y+y²) (0