设z=z(x,y)是由方程f(y/x,z/x)=0确定的隐函数,其中f具有一阶连续偏导数,求全微分DZ

问题描述:

设z=z(x,y)是由方程f(y/x,z/x)=0确定的隐函数,其中f具有一阶连续偏导数,求全微分DZ

隐函数f(y/x,z/x)=0求偏导:af/ax=f1*(y/x)'+f2*(z/x)'=(-yf1-zf2)/x^2af/ay=f1*(y/x)'=f1/xaf/az=f2*(z/x)'=f2/x因此,由该隐函数确定的函数z=z(x,y)的偏导数为:az/ax=-(af/x)/(af/az)=-[(-yf1-zf2)/x^2]/(f2/x)=[(...