已知a,b∈R,函数f(x)=x²+ax+1,且f(x+1)在定义域上是偶函数,函数g(x)=-bf[f(x+1)]+(3b-1).f(x+1)+2在(-∞,-2﹚上是减函数,在﹙-2,0)上是增函数.(1)求的值(2)如果在区间(-∞,-1)上存在函数F(x)满足F(x)×f(x+1)=g(x),试问当x为何值时,F(x)取得最小值?并求此最小值.

问题描述:

已知a,b∈R,函数f(x)=x²+ax+1,且f(x+1)在定义域上是偶函数,函数g(x)=-bf[f(x+1)]+(3b-1).
f(x+1)+2在(-∞,-2﹚上是减函数,在﹙-2,0)上是增函数.
(1)求的值
(2)如果在区间(-∞,-1)上存在函数F(x)满足F(x)×f(x+1)=g(x),试问当x为何值时,F(x)取得最小值?并求此最小值.

f(x+1)解析式我求出来是f(x+1)=x的平方,a=-2 b值不会求 ,第二问无从下手

题目中(-∞,2)应当为(-∞,-2) (1) f(x+1)=(x+1)^2+a(x+1)+1=x^2+(2+a)x+2+a在定义域上是偶函数 2+a=0,a=-2 f(x)=x^2-2x+1=(x-1)^2 f(x+1)=x^2 g(x)=-bf(x^2)+(3b-1)x^2+2=-b(x^2-1)^2+(3b-1)x^2+2 =-bx^4+(5b-1)x^2+...