过椭圆x^2/5+y^2/4=1的左焦点作一条斜率为2的直线与椭圆交于AB两点

问题描述:

过椭圆x^2/5+y^2/4=1的左焦点作一条斜率为2的直线与椭圆交于AB两点
O为坐标原点,求弦AB的长

椭圆焦点为F1(-1,0),F2(1,0),
直线AB的方程为 y=2(x-1) ,代入椭圆方程得 x^2/5+(x-1)^2=1,
化简得 6x^2-10x=0 ,
解得 x1=0,x2=5/3 ,
所以 A(0,-2),B(5/3,4/3)
IABI=(5√5)/3
解答完毕,请指教呀!