已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3(1)求an,bn(2)数列{an*bn}的前n项和Tn我第二小题不会做,求思路
已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3
(1)求an,bn
(2)数列{an*bn}的前n项和Tn
我第二小题不会做,求思路
(1)Sn= 2n^2+n (1)S(n-1) = 2(n-1)^2 + (n-1) (2)(1) -(2)an= 2n^2+n - 2(n-1)^2 - (n-1) = 4n-1an=4log(2)bn+34n-1 = 4log(2)bn+3log(2)bn = n-1bn = 2^(n-1)(2)anbn = (4n-1)(2^(n-1)) = 4[n2^(n-1)] - 2^(n-1)consider[x^(n+1)-1]/(x-1) = 1+x+x^2+...+x^n[(x^(n+1)-1)/(x-1)]' = 1+2x+..+nx^(n-1)1+2x+..+nx^(n-1) = [ (x-1)(n+1)x^n) -(x^(n+1)-1) ]/(x-1)^2 = [nx^(n+1)-(n+1)x^n+1]/(x-1)^2put x=21+2(2)+3(2)^2+..+n(2)^(n-1)=n2^(n+1)- (n+1)2^n +1summation anbn=summation {4[n2^(n-1)] - 2^(n-1)}= 4(n2^(n+1)- (n+1)2^n +1) - (2^n-1)=(4n).2^(n+1) - (4n+5).2^n +5
用错位相加减法.具体步骤为:an=4n-1 bn=2^(n-1)Tn=an·bn=(4n-1)2^(n-1) 2Tn=(4n-1)2^n T(n-1)=(4n-5)2^(n-2) 2 T(n-1)=(4n-5)2^(n-1) T(n-2)=(4n-9)2^(n-3) 2 T(n-2)=(4n-9)2^(n-2) ..T2=7·2¹ 2T2=7·2²...