在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.
问题描述:
在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.
答
证明:过D作DM⊥AB,于M,DN⊥AC于N,
即∠EMD=∠FND=90°,
∵AD平分∠BAC,DM⊥AB,DN⊥AC,
∴DM=DN(角平分线性质),
∵∠EAF+∠EDF=180°,
∴∠MED+∠AFD=360°-180°=180°,
∵∠AFD+∠NFD=180°,
∴∠MED=∠NFD,
在△EMD和△FND中
,
∠MED=∠DFN ∠DME=∠DNF DM=DN
∴△EMD≌△FND(AAS),
∴DE=DF.
答案解析:过D作DM⊥AB,于M,DN⊥AC于N,根据角平分线性质求出DN=DM,根据四边形的内角和定理和平角定义求出∠AED=∠CFD,根据全等三角形的判定AAS推出△EMD≌△FND即可.
考试点:全等三角形的判定与性质;角平分线的定义.
知识点:本题考查了全等三角形的判定和角平分线定义的应用,关键是正确作辅助线,进一步推出△EMD和△FND全等,通过做此题培养了学生运用定理进行推理的能力.