如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:(1)D是BC的中点;(2)△BEC∽△ADC;(3)BC2=2AB•CE.

问题描述:

如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:
作业帮
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)BC2=2AB•CE.

证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD是底边BC上的高又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点;(2)∵∠CBE与∠CAD是DE所对的圆周角,∴∠CBE=∠CAD,又∵∠BCE=∠ACD,∴△BEC∽△ADC;(3)由...
答案解析:(1)要证D是BC的中点,已知AB=AC,即证AD⊥BC即可,根据圆周角定理,AB是直径,所以∠ADB=90°,即可得证.
(2)欲证△BEC∽△ADC,通过观察发现两个三角形已经具备一组角对应相等,即∠AEB=∠ADC=90°,此时,再求另一角对应相等即可.
(3)由△BEC∽△ADC可证CD•BC=AC•CE,又D是BC的中点,AB=AC,即可证BC2=2AB•CE.
考试点:圆周角定理;相似三角形的判定与性质.
知识点:本题考查相似三角形的判定和性质.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边成比例、对应角相等.