在抛物线y^2=2px(p>0)的顶点,引两条互相垂直的弦OA,OB,求顶点O在AB上射影M的轨迹方程

问题描述:

在抛物线y^2=2px(p>0)的顶点,引两条互相垂直的弦OA,OB,求顶点O在AB上射影M的轨迹方程

分别设A,B坐标,用Y1与Y2表示,由OA垂直于OB得Y1Y2=-4p^又可表是O及其射影P连线方程,可由此方程得Y1+Y2=-2py/x再由A,B坐标得AB直线方程,将上面2个式子代入这个方程化简得(x-p)^2+y^2=p^2