证明对于任意正整数n,多项式(n+7)²-(n-5)²能被24整除

问题描述:

证明对于任意正整数n,多项式(n+7)²-(n-5)²能被24整除

(n+7)²-(n-5)²
=(n+7+n-5)(n+7-n+5)
=12(2n+2)
=24(n+1)
结果是24 的倍数,
所以,对于任意正整数n,多项式(n+7)²-(n-5)²能被24整除

(n+7)²-(n-5)²=(n+7+n-5)(n+7-n+5)=(2n+2)*12=2*(n+1)*12=24(n+1)
因为n为任意正整数,所以24(n+1)能被24整除。即多项式(n+7)²-(n-5)²能被24整除

(n+7)2-(n-5)2
=(n+7+n-5)(n+7-n+5)
=(2n+2)*12
=24(n+1)....................(**)
(**)/24=(n+1)
故对于任意正整数n,多项式(n+7)²-(n-5)²能被24整除
呵呵

(n+7)²-(n-5)²
=n²+14n+49-﹙n²-10n+25﹚
=n²+14n+49-n²+10n-25
=24n+24
=24﹙n+1﹚
∴对于任意正整数n,多项式(n+7)²-(n-5)²能被24整除

(n+7)²-(n-5)²=(n+7+n-5)(n+7-n+5)=(2n+2)*12=24(n+1)
所以对于任意正整数n,多项式(n+7)²-(n-5)²能被24整除