已知△ABC三边a、b、c满足a2+b2+c2=10a+24b+26c-338,请你判断△ABC的形状,并说明理由.

问题描述:

已知△ABC三边a、b、c满足a2+b2+c2=10a+24b+26c-338,请你判断△ABC的形状,并说明理由.

△ABC是直角三角形.理由是:∵a2+b2+c2=10a+24b+26c-338,∴a2-10a+25+b2-24b+144+c2-26c+169=0,∴(a-5)2+(b-12)2+(c-13)2=0,∴a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13.∵52+122=132,∴△ABC是直角三...
答案解析:将a2+b2+c2=10a+24b+26c-338进行配方,求出a,b,c,根据勾股定理的逆定理判断△ABC的形状.
考试点:勾股定理的逆定理.


知识点:本题考查了勾股定理逆定理的应用,是基础知识,比较简单.