如图,设抛物线x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.求证:A,M,B三点的横坐标成等差数列.
问题描述:
如图,设抛物线x2=2py(p>0),M为直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.求证:A,M,B三点的横坐标成等差数列.
答
证明:由题意,设A(x1,x122p),B(x2,x222p)(x1<x2),M(x0,-2p).由x2=2py得y=x22p,得y′=xp,所以kMA=x1p,kMB=x2p.因此直线MA的方程为y+2p=x1p(x−x0),直线MB的方程为y+2p=x2p(x−x0).所以,x...
答案解析:设出A,B的坐标,对抛物线的方程进行求导,求得AM和BM的斜率,因此可表示出MA的直线方程和直线MB的方程,联立求得2x0=x1+x2.判断出三者的横坐标成等差数列.
考试点:抛物线的应用.
知识点:本题主要考查了直线与圆锥曲线的综合问题,考查学生知识的灵活运用的能力和基本的计算的能力,属于中档题.