如图,在正方形ABCD中,E为CD上一动点,连AE交BD于F,过F作FH⊥AE交BC于H,过H作GH⊥BD交BD于G;求证:(1)AF=FH; (2)BD=2FG.
问题描述:
如图,在正方形ABCD中,E为CD上一动点,连AE交BD于F,过F作FH⊥AE交BC于H,过H作GH⊥BD交BD于G;求证:
(1)AF=FH;
(2)BD=2FG.
答
证明:(1)连接FC,延长HF交AD于点L,
∵BD为正方形ABCD的对角线,
∴∠ADB=∠CDF=45°.
∵AD=CD,DF=DF,
∴△ADF≌△CDF.
∴FC=AF,∠ECF=∠DAF.
∵∠ALH+∠LAF=90°,
∴∠LHC+∠DAF=90°.
∵∠ECF=∠DAF,
∴∠FHC=∠FCH,
∴FH=FC,
∴FH=AF;
(2)连接AC交BD于点O,可知:BD=2OA,
∵∠AFO+∠GFH=∠GHF+∠GFH,
∴∠AFO=∠GHF.
∵AF=HF,∠AOF=∠FGH=90°,
∴△AOF≌△FGH.
∴OA=GF.
∵BD=2OA,
∴BD=2FG.
答案解析:(1)延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;
(2)连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG.
考试点:正方形的性质;全等三角形的判定与性质.
知识点:本题考查了等腰三角形的判定和性质、全等三角形的判定和性质和正方形的性质,解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等是解题的关键.