初三二次函数难题(高手进)设二次函数y=ax^2+bx+c(a>0,c>1),当x=c时,y=0 当00时,求证:a/(x+2)+b/(x+1)+c/x>0主要是第二问!
问题描述:
初三二次函数难题(高手进)
设二次函数y=ax^2+bx+c(a>0,c>1),当x=c时,y=0 当00时,求证:a/(x+2)+b/(x+1)+c/x>0
主要是第二问!
答
(1)a>0,开口向上 又0
当对称轴小于0,0,c在抛物线的右侧,可以得出0对应的y值小于c对应的y值
此时又x=c时,y=0那么可以得到x=0时,y 所以对称轴大于c
-b/2a>c -b>2ac
当x=c时ac^2+bc+c=0 ac+b+1=0
ac+1=-b>2ac ac(2)
答
1.知x=c为方程ax^2+bx+c=0的一根 可求得ac+b+1=0
所以抛物线y=ax^2+bx+c与x轴至少有一个交点x=c
考虑2种情况
1)抛物线与x轴有两个交点
根据已知a>0抛物线开口向上 又知当0c得ac0抛物线开口向上 当00 c-ac>0 c-1>0
所以[(a+c)x+2c]/[x(x+2)+1]-(ac+1)/(x+1)>0
所以
a/(x+2)+b/(x+1)+c/x>[(a+c)x+2c]/[x(x+2)+1]-(ac+1)/(x+1)>0
即a/(x+2)+b/(x+1)+c/x>0