点A(1,2)到直线x+ky+1-2k=0的距离的最大值为

问题描述:

点A(1,2)到直线x+ky+1-2k=0的距离的最大值为

d=|1+2k+1-2k|/√(1+k²)=2/√(1+k²)
因为1+k²≥1
所以d=2/√(1+k²)≤2/1=2
所以最大值是2