求和:Sn=12+34+58+716+…+2n−12n.
问题描述:
求和:Sn=
+1 2
+3 4
+5 8
+…+7 16
. 2n−1 2n
答
因为Sn=
+1 2
+3 4
+5 8
+…+7 16
,2n−1 2n
所以
Sn=1 2
+1 4
+3 8
+…+5 16
+2n−3 2n
,2n−1 2n+1
两式相减得:
Sn=1 2
+1 2
+2 4
+2 8
+…+2 16
−2 2n
=2n−1 2n+1
+1 2
−
(1−1 2
)1 2n−1 1−
1 2
,2n−1 2n+1
则Sn=3−
.2n+3 2n
答案解析:利用错位相减法即可得到结论.
考试点:数列的求和.
知识点:本题主要考查数列求和,利用错位相减法是解决本题的关键.