lim n→∞ an^2+bn+1/3n-2=-2,求a,b之值
问题描述:
lim n→∞ an^2+bn+1/3n-2=-2,求a,b之值
答
分子分母同时除以n^2得到:
lim n→∞ an^2+bn+1/3n-2=(a+b/n+1/n^2)/(3/n-2/n^2)=-2
因为分母趋于0,分子趋于a,而极限为-2,那么a=0
接着a=0代入:
lim n→∞ bn+1/3n-2=lim n→∞(b+1/n)/(3-2/n)=-2
所以,b/3=-2,b=-6
综上:a=0,b=-6
答
an^2+bn+1/3n-2
n→∞ 时。n^2→∞,所以a必须是0
同理,b/3 = -2
而后验证结果是正确的
所以a=0 ,b=-6
答
lim n→∞ an^2+bn+1/3n-2
=lim n→∞ ( an + b + 1/n )/ (3-2/n)
∴ a = 0
lim n→∞ an^2+bn+1/3n-2
= lim n→∞ bn+1/3n-2
= lim n→∞ [b + 1/n]/[3-2/n]
= b/3 = -2
∴ b = -6