如图所示,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,该球的表面积是______.
问题描述:
如图所示,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,该球的表面积是______.
答
答案解析:PA、PB、PC可看作是正方体的一个顶点发出的三条棱,所以过空间四个点P、A、B、C的球面即为棱长为a的正方体的外接球,球的直径即是正方体的对角线,求出对角线长,即可求出球的表面积.
考试点:球的体积和表面积.
知识点:本题是基础题,考查球的内接体知识,球的表面积的求法,考查空间想象能力,计算能力,分析出,正方体的对角线就是球的直径是解好本题的关键所在.