已知三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA、PB、PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为( ) A.18 B.24 C.182 D.242
问题描述:
已知三棱锥P-ABC的四个顶点均在半径为3的球面上,且PA、PB、PC两两互相垂直,则三棱锥P-ABC的侧面积的最大值为( )
A. 18
B. 24
C. 18
2
D. 24
2
答
∵PA,PB,PC两两垂直,又∵三棱锥P-ABC的四个顶点均在半径为3的球面上,∴以PA,PB,PC为棱的长方体的对角线即为球的一条直径.∴36=PA2+PB2+PC2,则由基本不等式可得PA2+PB2≥2PA•PB,PA2+PC2≥2PA•PC,PB2+PC2...