a-1-(a²/a-1)(4/a+2)+a-2(1/x-3)-(1/x+3)

问题描述:

a-1-(a²/a-1)
(4/a+2)+a-2
(1/x-3)-(1/x+3)

第一题 a-1-(a2/a-1)
通分=[(a-1)2-a2]/(a-1)
=-(2a-1)/(a-1)
第二题 (4/a+2)+a-2
通分=[4+(a+2)·(a-2)]/(a+2)
=a2/(a+2)
第三题(1/x-3)-(1/x+3)
通分=[(X+3)-(X-3)]/[(X+3)·(X-3)]
=6/(X2-9)

1、原式=((a-1)(a-1))/(a-1)-a^2/(a-1)=(a^2-2a+1-a^2)/(a-1)=(1-2a)/(a-1)2、原式=4/(a+2)+((a+2)(a-2))/(a+2)=(4+(a+2)(a-2))/(a+2)=(4+a^2-2^2)/(a+2)=a^2/(a+2)3、原式=(x+3)/((x-3)(x+3))-(x-3)/((x-3)...