如图,在梯形ABCD中,AD∥BC,∠D=90°,DC=6,sinB=3/5,点P、Q分别是边BC、对角线AC上的动点,(点P不与B、C重合),∠APQ=∠DAC=∠B,设PB=x,AQ=y. (1)求BC的长; (2)求y关于x的函数解析

问题描述:

如图,在梯形ABCD中,AD∥BC,∠D=90°,DC=6,sinB=

3
5
,点P、Q分别是边BC、对角线AC上的动点,(点P不与B、C重合),∠APQ=∠DAC=∠B,设PB=x,AQ=y.

(1)求BC的长;
(2)求y关于x的函数解析式,并写出x的取值范围;
(3)当△APQ是等腰三角形时,求x的值.

(1)作AH⊥BC,垂足为H.(1分)
由∠D=90°,得 DC⊥AD,
由AD∥BC,得 DC⊥BC.
又∵AH⊥BC,
∴AH=DC=6.(1分)
在Rt△ABH中,sinB=

AH
AB

∵sinB=
3
5
,AH=6,
∴AB=10;
由勾股定理得 BH=8.(1分)
由AD∥BC,得∠DAC=∠ACB,
又∵∠DAC=∠B,
∴∠ACB=∠B,
∴AB=AC.
又∵AH⊥BC,
∴BC=2BH=16.(1分)
(2)∵∠APC=∠B+∠BAP=∠APQ+∠QPC,
又∵∠APQ=∠B,
∴∠BAP=∠QPC,
又∵∠B=∠ACB,即∠B=∠QCP,
∴△ABP∽△PCQ.(2分)
PB
AB
QC
PC
,(1分)
x
10
10−y
16−x

整理得y=
1
10
x2
8
5
x+10
,(2分)
(0<x<16).(1分)
(3)当△APQ是等腰三角形时,分三种情况:
①当PA=PQ时,
∵∠B=∠QCP,∠BAP=∠QPC,∴△ABP≌△PCQ;
∴PC=AB,即BC-PB=AB,
∴16-x=10,解得 x=6;                         (1分)
②当AQ=PQ时,∠QAP=∠APQ,
∵∠APQ=∠B,∴∠QAP=∠B,即∠PAC=∠B;
又∵∠ACP=∠BCA(公共角),∴△ACP∽△BCA;
AC
PC
BC
AC

∴AC2=PC•BC,即102=(16-x)•16,
解得x=
39
4
;                                 (1分)
③当AQ=AP时,则有∠AQP=∠APQ,
∵∠APQ=∠ACB,∴∠AQP=∠ACB,
此时,点Q与点C重合,则有点P与点B重合,这与点P不与点B重合矛盾,所以AQ≠AP;(1分)
综上所述,当△APQ是等腰三角形时,x=6或x=
39
4
.    (1分)