已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在此抛物线上,矩形面积为12,(1)求该抛物线的对称轴;(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

问题描述:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

(1)∵直线y=ax+3与y轴交于点A,∴点A坐标为(0,3),∴AO=3,∵矩形ABCO的面积为12,∴AB=4,∴点B的坐标为(4,3),∴抛物线的对称轴为直线x=2;          ...
答案解析:(1)根据已知的直线解析式,可得到点A的坐标,进而可利用矩形的面积求出OC、AB的长,即可得到B、C的坐标,由于AB∥x轴,且同时在抛物线的图象上,根据这两点的坐标,即可确定抛物线的对称轴方程;
(2)由于⊙P同时经过点A、B,根据抛物线和圆的对称性知,圆心P必在抛物线的对称轴上,由此可确定点P的横坐标;由于⊙P与y轴两交点的距离正好等于AB的长,根据圆心角、弦的关系,即可得到P到y轴的距离应该等于P到AB的距离,由此可确定点P的纵坐标,即可得到点P的坐标;
(3)假设两个三角形相似,显然∠DAO>∠DAE,因此只有一种情况:∠DAE=∠DOA,可过D作DM⊥y轴,作DN⊥x轴,即可得到∠DAM=∠DON,易证得△DAM∽△DON,设出点D的纵坐标,然后表示出AM、DN的长,进而根据相似三角形得到的比例线段求出点D的纵坐标,也就得到了点D的坐标,而后可利用待定系数法求出该抛物线的解析式.
考试点:二次函数综合题.


知识点:此题考查了二次函数、圆的对称性,圆心角、弧、弦的关系,相似三角形的判定和性质,二次函数解析式的确定等重要知识,涉及知识点较多,难度较大.