f(x)=(sin2x+2)(cosx+2),x属于[-2/π,2/π],求函数最大值最小值

问题描述:

f(x)=(sin2x+2)(cosx+2),x属于[-2/π,2/π],求函数最大值最小值

f(x)=(sinx+2)(cosx+2)=sinxcosx+2(sinx+cosx)+4 令sinx+cosx=t t=√2sin(x+π/4) t∈[-1,√2] sinxcosx=(t^2-1)/2f(t)=(t^2-1)/2+2t+4=0.5t^2+2t+3.5=0.5(t+2)^2+1.5 t∈[-1,√2] 会了吧