设函数y=f(x)在x=x0点处可导,则曲线y=f(x)在(x0,y0)处切线方程为____A.y-y0=f(x0)(x-x0) B.y-y0=f(x)(x-x0) C.y-y0=f'(x0)(x-x0) D.y-y0=f'(x)(x-x0)
问题描述:
设函数y=f(x)在x=x0点处可导,则曲线y=f(x)在(x0,y0)处切线方程为____
A.y-y0=f(x0)(x-x0) B.y-y0=f(x)(x-x0) C.y-y0=f'(x0)(x-x0) D.y-y0=f'(x)(x-x0)
答
答案 D
次方程导数为斜率,带入x0,y0,知道两点和斜率,答按不难得出