1*2*3+2*3*4+...+n(n+1)(n+2)=在数列{an}中,an=1/(n+1)+2/(n+1)+...+n/(n+1).又bn=2/(an*an-1) 求数列{bn}的n项和sn=1/2+1/6+...+1/n(n+1) 若sn*sn+1=3/4
问题描述:
1*2*3+2*3*4+...+n(n+1)(n+2)=
在数列{an}中,an=1/(n+1)+2/(n+1)+...+n/(n+1).又bn=2/(an*an-1) 求数列{bn}的n项和
sn=1/2+1/6+...+1/n(n+1) 若sn*sn+1=3/4
答
n(n+1)(n+2)=n^3+3n^2+2n1^3+2^3+...+n^3=[n(n+1)/2]^2(自然数立方和公式,可以用更高次的项来推,这里省略);n项自然数平方和公式:n(n+1)(2n+1)/6;则1*2*3+2*3*4+...+n(n+1)(n+2)=[n(n+1)/2]^2+n(n+1)(2n+1)/6+n(n+...