如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.△ABP△AOB(2)试在直线AM上找一点P,使得S△ABP=S△AOB ,请直接写出点P的坐标;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.要步骤 着急急急急急急!!!!!!!!!!!!!!!谢谢谢谢谢谢!!!!!!!!!!!!!
如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直
如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.△ABP△AOB
(2)试在直线AM上找一点P,使得S△ABP=S△AOB ,请直接写出点P的坐标;
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
要步骤 着急急急急急急!!!!!!!!!!!!!!!
谢谢谢谢谢谢!!!!!!!!!!!!!
P(6,1) (-12,6)
H(-12,0) (-6,18)
(1)画图可以知: △ABP与△AOB 面积有重合△AMB部分
所以只要只要△AOM与△MBP面积相等即可
因为 M为OB中点,且∠AMO= ∠PMB
所以当点P为 以M点为对称中心 A点的对称点时 即可使结论成立
点M(0,6)A(-6,0) B(0,12)
点P坐标(6,12)
(2)存在 由图可知存在时 只能是形成梯形ABMH 上底为MH 下底为AB,
则AB 斜率与 MH斜率相等 为 2, 所以得到 MH 直线方程为
y=2x+6 又因为等腰梯形中 AH = BM =6 设点 H(x,y)
可得到(x+6)^2+y^2=36 (距离公式)
联立 MH直线方程 和 距离公式 可得到
(18/5,66/5)
求解过程中注意点H 在第二象限,所以舍去x=-6的点