抛物线y=ax2+bx+c开口向上,对称轴是直线x=1,A(-2,y1),B(0,y2),C(2,y3)在该抛物线上,则y1,y2,y3大小的关系是_.
问题描述:
抛物线y=ax2+bx+c开口向上,对称轴是直线x=1,A(-2,y1),B(0,y2),C(2,y3)在该抛物线上,则y1,y2,y3大小的关系是______.
答
∵抛物线y=ax2+bx+c开口向上,对称轴是直线x=1,
∴抛物线上的点离对称轴越远,对应的函数值就越大,
∵x取-2时所对应的点离对称轴最远,x取0与2时所对应的点离对称轴一样近,
∴y1>y2=y3.
故答案是:y1>y2=y3.